top of page

Electronic properties of atomically thin Molybdenum Disulfide layers grown by physical vapour deposition: band structure and energy level alignment at layer/substrate interfaces

Fabio Bussolotti, Jianwei Chai, Ming Yang, Hiroyo Kawai, Zheng Zhang, Shijie Wang, Swee Liang Wong, Carlos Manzano, Yuli Huang, Dongzhi Chi and Kuan Eng Johnson Goh, “Electronic properties of atomically thin MoS2 layers grown by physical vapour deposition: band structure and energy level alignment at layer/substrate interfaces”, RCS Advances 8, 7744 (2018).

Abstract

We present an analysis of the electronic properties of an Molybdenum Disulfide monolayer (ML) and bilayer (BL) as-grown on a highly ordered pyrolytic graphite (HOPG) substrate by physical vapour deposition (PVD), using lab-based angle-resolved photoemission spectroscopy (ARPES) supported by scanning tunnelling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) for morphology and elemental assessments, respectively. Despite the presence of multiple domains (causing in-plane rotational disorder) and structural defects, electronic band dispersions were clearly observed, reflecting the high density of electronic states along the high symmetry directions of Molybdenum disulfide single crystal domains. In particular, the thickness dependent direct-to-indirect band gap transition previously reported only for Molybdenum disulfide layers obtained by exfoliation or via epitaxial growth processes, was found to be also accessible in our PVD grown Molybdenum disulfide samples. At the same time, electronic gap states were detected, and attributed mainly to structural defects in the 2D layers. Finally, we discuss and clarify the role of the electronic gap states and the interlayer coupling in controlling the energy level alignment at the Molydenum disulfide/substrate interface.

7.png
bottom of page